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Abstract: Recovering an unknown matrix from corrupted observations is known as the matrix 
completion problem, it is fundamental to a number of tasks. However, existing most algorithms 
such as Singular Value Thresholding (SVT) heavily depend on the initialization, which will bring 
large computational complexity. In this paper, we propose a fast projection singular value 
thresholding (FPSVT) method, with which we can accelerate the iteration. The key idea is using a 
projection operator to get an improved initialization which is closer to the unknown optimal 
solution and using an adaptive thresholding in each iteration of our algorithm. We demonstrate the 
utility of the proposed method in numerical simulations. The experimental result gives empirical 
evidence on efficient improvements of the proposed algorithm. 

1. Introduction 
In recent years, matrix completion techniques have attracted much attention from researchers in 

many areas; such as computer vision [1], collaborative filtering [2], image inpainting [3]. It is 
impossible to recover a corrupted matrix without any assumptions about the matrix, Candes 
proposed in [4] if the given matrix is low rank, the missing entries of the corrupted matrix can be 
recovered through minimizing the matrix rank. The low rank assumption is reliable and useful in 
many areas such as collaborative filtering and face recognition [5]. The most famous collaborative 
filtering problem is Netflix problem [6], Netflix is a company which want to provide 
recommendations to its customers based on their preferences. But customers usually rate only very 
few movies that they have watched so there are few entries of the movies data matrix. In this 
situation, the movies data matrix can be regard as low rank because it is commonly that only a few 
data contribute to customers preferences. So, we can use matrix completion algorithm to construct 
the incomplete movies data matrix. in the face recognition problem,[7] the pixel of a face image can 
be regard as low rank because the different columns and rows may have the same pixel. The low 
rank face image is that we want to gain in face recognition problem. 

Unfortunately, matrix completion problem is NP-hard because the rank is nonconvex in real. To 
solve the problem, the authors in [8] propose convex nuclear norm to solving rank minimization, and 
its theoretical guarantees have been provided in [9]. Semi-definite programming (SDP) is usually 
used to rank minimization problem, but directly realizing the SDP will get high computational cost. 
So, algorithms which are more computationally efficient than the SDP-based methods have been 
suggested, such as singular value thresholding (SVT) [10], accelerated proximal gradient (APG) [11], 
Singular Value Projection [12]. The method starts with an initialization, and therefore, the 
performance heavily depends on that initialization. But traditional algorithms ordinarily fill the 
missing entries with zeros and assume that corrupted matrix equals to the real matrix. In order to 
improve the performance, the authors in [13] propose an improved initialization based on rank-1 
updates to solve the original and give theoretical guarantees which the initialization is closer to the 
optimal solution than the traditional all zeros initialization. 
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In order to solve the problem of matrix completion in dynamic scenarios, the authors in [14] 
introduce an adaptive singular value thresholding algorithm which based on the online linearized 
Bregman iteration algorithm. In [15-16], it is showed that the proposed algorithm is fast when using 
an iterative method with adaptive thresholding. The adaptive thresholding can accelerate the process 
of iteration which can efficient decrease the great computational cost of singular value 
decomposition (SVD). 

In this paper our main contributions are stated as followings. First, a study of the proposed 
existing matrix completion algorithms and propose a new framework of matrix completion method, 
which can recover the corrupted data. Second, we develop a fast projection singular value 
thresholding algorithm and claim that it outperforms than the conventional matrix completion 
algorithm. Third a briefly analysis of the adaptive threshold in the proposed FPSVT algorithms and 
how to select the appropriate threshold. 

The remainder of this paper is organized as follows. We review the SVT algorithm for recovering 
low rank matrices, then by combining the projection operator the FPSVT algorithm is proposed and 
analyzed in Section II. Numerical simulations are presented and discussed in Section III and finally 
Section IV concludes the paper. 

Notation: The notations used in this paper are presented in Table 1. 
Table 1. Summary of Nation 

Nation Description 
𝐗𝐗 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 

𝑷𝑷𝛀𝛀 
𝑿𝑿𝒊𝒊𝒊𝒊 
𝑺𝑺𝝉𝝉 
𝑷𝑷𝒍𝒍 
𝛀𝛀 

‖𝑿𝑿‖∗ 
‖𝑿𝑿‖𝑭𝑭 

Matrix with size m × n 
the sampling operator 

i-th row and j-th column of X 
the soft thresholding operator 

the orthogonal projection operator 
the number of known entries 

Nuclear norm of X 
Forbenius norm of X 

2. Problem Formulation 
In this section, we first introduce the matrix completion problems, then briefly review and 

summarize the SVT and FPSVT algorithm. 

2.1 The Form of Matrix Completion 
Matrix completion is a technique to recover incomplete matrix from a subset of entries selected 

uniformly at random from a low rank matrix or approximately low rank matrix [2], [17-18]. The 
incomplete matrix M can be recovered by solving the following rank minimization problem in [2]: 

minimize 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋) 
                            subject to 𝑃𝑃Ω(X) = 𝑃𝑃Ω(M),                           (1) 

 
where rank(X) denotes the rank of a matrix X, the sampling operator 𝑃𝑃Ω:𝑅𝑅𝑚𝑚×𝑛𝑛 → 𝑅𝑅𝑚𝑚×𝑛𝑛 is 

defined by following 

                       𝑃𝑃Ω(𝑋𝑋) = �
𝑋𝑋𝑖𝑖𝑖𝑖  (𝑖𝑖, 𝑗𝑗) ∈ Ω

   0   (𝑖𝑖, 𝑗𝑗) ∈ Ω′                             (2) 

 
We use |Ω| represent the cardinality of Ω which is the number of known entries. For example, 

we suppose the matrix X is: 
                                𝑋𝑋 = �1 2 3

4 5 6�                               (3) 
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If we have three elements are known as Ω = {(1,2), (2,2), (2,3)}, we can have: 
                               𝑋𝑋Ω = �0 2 0

0 5 6�                               (4) 
 

However, the problem (1) is NP-hard and impossible in practice. Candes proposed nuclear norm 
minimization model to solve the following rank minimization model 

minimize ‖𝑋𝑋‖∗ 
                       subject to 𝑃𝑃Ω(X) = 𝑃𝑃Ω(M),                          (5) 

 
where the nuclear norm ‖𝑋𝑋‖∗ is the summation of the singular values of X. Candes in [10] 

proved that if Ω is sampled uniformly at random among all subset of cardinality m, we can solve 
the problem (5) with large probability where the number of samples should obey m ≥ 1.2Cn𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 
In order to recover the incomplete matrix exactly, there is a restriction on the range of rank r. 

2.2 The Algorithm of Singular Value Thresholding 
In order to solve the matrix completion problem, Candes in [3] derived the singular value 

thresholding (SVT) algorithm. The singular value thresholding operator is proposed to solve the 
problem (5), which the soft-thresholding operator 𝑆𝑆𝜏𝜏 (τ ≥ 0) is defined as follows: 

𝑆𝑆𝜏𝜏(X) ≔ U 𝑆𝑆𝜏𝜏(Σ)𝑉𝑉∗, 
                         𝑆𝑆𝜏𝜏(Σ) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({(𝜎𝜎𝑖𝑖 − 𝜏𝜏)+})                           (6) 

 
where (𝜎𝜎𝑖𝑖 − 𝜏𝜏)+ is the positive part of (𝜎𝜎𝑖𝑖 − 𝜏𝜏), equal to (𝜎𝜎𝑖𝑖 − 𝜏𝜏)+ = max (0, (𝜎𝜎𝑖𝑖 − 𝜏𝜏)). The 

soft thresholding operator can simply apply to the singular value of X, shrinking these towards zero 
effectively. The singular value thresholding operator is the proximity operator conncened with the 
nuclear norm, which can express as follows: Starting with 𝑌𝑌0 = 0 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, optimization variable 
X∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, k=1,2,3, …, 

                    �𝑋𝑋
𝑘𝑘 = 𝑆𝑆𝜏𝜏(𝑌𝑌𝑘𝑘−1)                        

𝑌𝑌𝑘𝑘 = 𝑌𝑌𝑘𝑘−1 + 𝛿𝛿𝑘𝑘𝑃𝑃Ω(𝑀𝑀 − 𝑋𝑋𝑘𝑘)
                       (7) 

 
Where 𝛿𝛿𝑘𝑘 is the positive step sizes and the stopping criterion is determined by the step sizes. 

Unfortunately, SVT requires full singular value decomposition (SVD) of a m × n matrix at each 
iteration, lead to the high compleximal to deal with a large-scale matrix. In order to avoid the high 
computational complexity of the SVT, a fast SVT algorithm has always been wanted in various 
large-scale problems. 

3. Proposed Methods 
3.1 Fast Projection Singular Value Thresholding 

Considering the mathematical model (5), we apply the orthogonal projection operator 𝑃𝑃𝑙𝑙(∙) 
proposed in [12] to deal with the original matrix, which can be derived as follows: 

minimize ‖𝑋𝑋′‖∗ 
                   subject to 𝑃𝑃Ω(X) = 𝑃𝑃Ω(M),𝑋𝑋′ = 𝑃𝑃𝑙𝑙(𝑋𝑋)                     (8) 

 
where  𝑋𝑋′ = 𝑃𝑃𝑙𝑙(𝑋𝑋) ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 is a projected low rank matrix, which the orthogonal projection 

operator 𝑃𝑃𝑙𝑙(∙) is defined as follows: 
𝑋𝑋𝑡𝑡+1 ← 𝑃𝑃𝑙𝑙(𝑋𝑋𝑡𝑡 − 𝜂𝜂𝑡𝑡𝐴𝐴𝑇𝑇(𝐴𝐴(𝑋𝑋𝑡𝑡) − 𝑏𝑏)) 

s.t 
A (𝑋𝑋)=b  X ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, 𝑏𝑏 ∈ 𝑅𝑅𝑑𝑑                          (9) 

where A is an affine transformation from 𝑅𝑅𝑚𝑚×𝑛𝑛 to 𝑅𝑅𝑑𝑑, 𝜂𝜂𝑡𝑡 is the step-size. 
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Algorithm 1. Fast projection singular value 
thresholding (FPSVT) algorithm. 
 
Require: matrix sampled entries 𝑷𝑷𝛀𝛀(𝐌𝐌)  and 
corrupted entries 𝑷𝑷𝛀𝛀′(𝐌𝐌) , index set 𝛀𝛀 , 
maximum iterations K, stopping tolerance 𝛜𝛜 
and step-size 𝛅𝛅. 
1: Initialization: 𝑷𝑷𝛀𝛀(𝐗𝐗) = 𝑷𝑷𝛀𝛀(𝐌𝐌) 𝒀𝒀𝟎𝟎 = 𝑷𝑷𝒍𝒍(𝑿𝑿) 
2: for k=1, …, K do 
3:  compute the top l singular vectors of 𝒀𝒀𝒌𝒌 to 
obtain Z:        𝒁𝒁𝒌𝒌 ← 𝑼𝑼𝒍𝒍𝚺𝚺𝒍𝒍𝑽𝑽𝒍𝒍 
4:  Update the corrupted matrix 𝑿𝑿𝒌𝒌+𝟏𝟏 =
𝑺𝑺𝝉𝝉�𝒁𝒁𝒌𝒌� 
5:  if �𝑷𝑷𝛀𝛀(𝑿𝑿𝒌𝒌 −𝑴𝑴)�

𝑭𝑭
/‖𝑷𝑷𝛀𝛀(𝑴𝑴)‖𝑭𝑭 ≤ 𝝐𝝐, 

break; 
     Set 𝒁𝒁𝒌𝒌+𝟏𝟏 = 𝒁𝒁𝒌𝒌 + 𝛅𝛅𝑷𝑷𝛀𝛀(𝑴𝑴−𝑿𝑿𝒌𝒌) 

6: end for 
7: output: Z= 𝑷𝑷𝛀𝛀′(𝐙𝐙) + 𝑷𝑷𝛀𝛀(𝐌𝐌) 
 

In general, SVT algorithm requires SVD computations which occupies the largest computation 
cost, 𝑖𝑖, 𝑒𝑒, O(mn, min (m, n)) at each iterate. In algorithm 1 we apply the orthogonal projection 
operator 𝑃𝑃𝑙𝑙(∙) to accelerate general nuclear norm minimization (NNM) problem, it can avoid the 
unexpected expensive computation by applying the orthogonal projection operator 𝑃𝑃𝑙𝑙(∙) to deal 
with in completed original matrix.  

The FPSVT algorithm pseudo-code is found in algorithm 1, which computation iterates the 
following two steps: 1) applying orthogonal projection operator 𝑃𝑃𝑙𝑙(∙) to original matrix, 2) using 
adaptively threshold for SVD at each iteration in SVT. For SVT, the computational bottleneck in 
each iteration is the SVD computation in step 1. By exploiting the orthogonal projection operator 
𝑃𝑃𝑙𝑙(∙), our method efficiently reduces iteration count before convergence. In addition, by using 
adaptively threshold for SVD, we can further reduce the computation of SVT as described in Sec B. 

3.2 Adaptive Thresholding 
In order to accelerated the process of iteration in FPSVT, we use an iterative method with 

adaptive thresholding to recovery the incomplete matrix. The method of adaptive thresholding is 
adopted from [15] which use a thresholding operator to reduce the computation complexity. To 
obtain a fast and accurate approximation method for SVT, the thresholding operator can be 
expressed an exponential thresholding scheme as follows: 

                                τ = a𝜎𝜎𝑖𝑖𝑒𝑒−𝑏𝑏𝑏𝑏                                 (10) 
 

where a and b are two constants, 𝜎𝜎𝑖𝑖 is the largest singular value of original matrix and k is the 
maximum iterations. Note the b is supposed to set a value less than 1 to be sure that there has 
conpoent will be use at the first iteration. When we choose the constant a and b much greater, the 
iteration of our algorithm will reduce sooner but the performance of the algorithm will become bad 
corresponding. And when choose the constant smaller, the iteration of our algorithm will terminate 
slower and the performance will become bad too.  

4. Experimental Results 
In this section, we will evaluate the efficiency of the FPSVT algorithm with other algorithm using 

synthetic data. All the simulations were implemented in MATLAB2014b and performed on a 
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computer with a 2.5GHz CPU and 4GB memory. The same shared parameters proposed in original 
paper were used in different algorithms. 

 
(a) 

 
  (b) 

Fig 1. Normalized RMSE versus iteration number. (a) Synthetic matrix (1000× 1000, k=10). (b) 
Synthetic matrix (1000× 1000, k=20). 

                                    

4.1 Synthetic Random Data 
In our experimental, we evaluate our method in comparison to other method with synthetic 

random data which is obtained from the synthetic matrices: G ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 with rank k by using two 
random matrices G1 ∈ 𝑅𝑅𝑚𝑚×𝑘𝑘  and 𝐺𝐺2 ∈ 𝑅𝑅𝑘𝑘×𝑛𝑛  whose entries satisfy the standard Gaussion 
distribution. The synthetic matrices G can be set in following: {1000 × 1000(k = 10), 1000×
1000(k = 20). According to [9] the minimum sample ratio for guaranteeing the exact recovery 
result is (O (Nklog (N))/(m× n)), so the minmun sample ratio of synthetic matrices G are: {O 
(6.91%), O (13.82%). In this simulated experimental, we set the maximum iterations N from 30 to 
50 for all the methods to test the three algorithms and the sampling ratio is set to 30% in all 
simulated data. We use stopping criteria ‖𝑋𝑋𝑁𝑁+1 − 𝑋𝑋𝑁𝑁‖𝐹𝐹/‖𝑋𝑋𝑁𝑁‖𝐹𝐹 and terminate the algorithm if the 
stopping criteria or iterationd is met. We find that tol=1e-04 is small enough to obtain a reasonable 
result for the three algorithms, so the stopping torerance tol=1e-04 is set for all algorithm. Other 
parameters of the compared algorithm are set as the original paper. 
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To quantitatively evaluate the four reconstruction methods, the normalized root meat square error 
(NRMSE) is used to assess their reconstruction accuracy. The normalized root meat square error 
(NRMSE) is defined as following: 

                   NRMSE(M) = �𝐸𝐸 �‖𝑀𝑀−𝐺𝐺‖𝐹𝐹
2

‖𝐺𝐺‖𝐹𝐹
2 �                                               (11) 

 
where M is the result constructed by matrix completion and G is the original matrix, the ‖∙‖𝐹𝐹 is 

the Frobenius norm of matrix. 
Figure 1 plots the NRMSE versus iteration number (30-50) with SVT, SVP, FPSVT methods for 

two synthetic matrices:1000× 1000(k=10) and 1000× 1000(k=20). It is clear that SVP and our 
method converge much faster than original SVT algorithm and only about thirty iterations are 
needed to obtain an accepted solution. Although, SVP have the same iteration as our method to 
obtain an accurate solution, the FPSVT is slightly inferior to the SVP because of having a better 
performance to the simulated data.  

5. Conclusion 
In this paper we have proposed a fast projection singular value thresholding (FPSVT) algorithm 

termed SVD based on random projection to recover the corrupted temperature field data (simulated 
by uniformly and random sampling). A projection operator is used for improving the initialization 
which is closer to the optimal solution, and an adaptive thresholding is used to speed up the process 
of iteration in FPSVT. The experimental results show that the proposed FPSVT method outperforms 
the SVT and SVP algorithm in solving the corresponding convex program in terms of synthetic 
random data. 
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